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Complex networks are an emerging property of
hierarchical preferential attachment
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Summary

Scale independence is observed in all aspects of human life and
often modeled through preferential attachment (PA). Net-
work science and PA processes tend to focus on one feature at a
time; e.g. degree distribution |1] or community structure |2].

Complex networks are constructs obtained by projecting complex
hierarchical systems on a set of nodes and links; collapsing
geographical /age/cultural /professional correlations.

Why not directly model the hierarchical system itself instead of
its projection?
What can emerge from a simple hierarchy of scale independent
organizations”

Hierarchical Preferential Attachment features
e the simplicity of preferential attachment,

e complex networks as an emerging property.

Complex networks emerge from hierarchy?

Hierarchical systems produce networks when projecting under a
chosen level of structure. Correlations inter and intra levels of
structures dictate properties of the network:

e locally: degree and clustering;
e clobally: centrality, self-similarity;

e + complex properties such as geometrical mapping!

Hierarchy makes complex networks complex.
HPA is perfectly suited to model scale-independent networks.

Hierarchical Preferential Attachment (HPA)

a;

HPA = colored balls are thrown in embedded bins.
e Embedded bins (top left) represent a tree-like hierarchy (top right).

e Balls/bins are different structural levels (e.g. people, communities, cities, countries).

e At level 7, let p, = probability that a ball falls in a new bin;
¢; = probability that the color of the ball is new for that bin.

e Whenever an existing bin and /or color has to be chosen, it is done preferentially to its
size/frequency at that level.

e A network is obtained by projecting the system on a given level.

e For the network on the right: colors found in a common bin on the lowest levels are
linked in the network. This could be a network of collaborating scientists, projecting
labs (level 3) across cities (level 2) and countries (level 1) on a single social network.

e Other projections are possible; e.g., a network of the boxes of level 3 that share at
least one color could be a network of collaborations between research groups.

Proof of concept: Fractality and geometrical mapping
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Fractal (& non-fractal) networks from hierarchy:

HPA vyields fractal and non-fractal networks: self-similarity might imply hierarchy, the opposite is not true.
e Well-mixed hierarchies have a network diameter D scaling with the logarithm of the number of nodes N (non-fractal)
e Systems with well defined hierarchy lead to a power-law relation between D and N (fractal)

Fractality is uncovered with box-counting [3|: groups of nodes within a distance r (number of links) are
assigned to the same box. The fractal dimension dp relates the number Ny of boxes and their size r: Np b,

Figure on the left: box counting results on a fractal network (protein interaction network of Homo Sapiens) and a
non-fractal network (the Internet at the level of autonomous systems) |3].

. HPA models how both of these networks span and cover their respective space.

Hyperbolic mapping of networks [4]:

Mapping of a network: assign geometrical positions to nodes to embed the network in an hyperbolic space. Nodes
close (in links) in the network must be geometrically close (in space).
Navigability of complex networks:

e predicts existence of links as a function of geometrical distance between nodes, enabling an efficient navigation.
e is not captured by classical preferential attachment.

Figure on the left: probability of connection P.(l) between nodes at a distance [ after an inferred projection of the
networks unto an hyperbolic space [4].

e The Internet and its HPA model share a similar scaling exponent for their degree distribution (inset).

e The CCM (Correlated Configuration Model) corresponds to a rewired Internet preserving degree distribution and
degree-degree correlations, but obviously lacking the more complex structural correlations.

. Geometrical constraints can emerge simply from hierarchy.
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Case study: movie production structure

Hierarchy: countries (largest bins, level £ = 1) containing production companies (middle
bins, level k = 2) producing movies (smallest bins, level k£ = 3) with producers (colored balls).

We set all {p;, q;} with S}, ,, (distribution of level k structures of sizes n) and Ny, , (distribution of
colors appearing in m level k structures) by comparing data (dots) and simulations (lines).
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Projection for a realization of HPA:

e Project the system in a network of co-producing credits:
links between producers who have produced together, regardless of companies and country:.

e Random HPA network captures structure from real network not captured by Standard PA:

1. degree distribution n(k)
2. local clustering coefficient C'(k) around nodes of degree k (C'(k) = 0V k in Standard PA)

3. distribution n(c) of coreness ¢, i.e. number of nodes in a shell of the k-core decomposition
(n(c) = d.1 in Standard PA)
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